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ABSTRACT 

 

The inertial cavitation of bubble clouds has been considered to be the hidden 

crucial mechanism for recent new therapeutic ultrasound applications such as 

Histotripsy and the ultrasound drug delivery. Although many models are already put 

forward to simulate the cavitation process, due to the inaccessible experimental 

validation, which model works closest to the real world situation is not well 

investigated. The objective of this thesis is mainly to compare the simulation 

performance of the popular Rayleigh-Plesset model and Gilmore-Akulichev model 

exposed to high intensity focused ultrasound in terms of the bubble equilibrium 

radius, the ultrasonic pressure, frequency and gas diffusion.  

Our results show that under the same acoustic wave, before the first collapse, the 

bubble oscillates similarly with Rayleigh-Plesset and Gilmore-AKulichev models, 

but it collapses much more violently with Rayleigh-Plesset model. When more 

cycles of ultrasonic wave are exposed to the bubble, these two models behave 

disparately both in the oscillation and collapse stages. With Gilmore-Akulichev 

model, the bubble tends to oscillate in a more stable and bounded shape while it’s 

expands and collapses unrealistically with Rayleigh-Plesset model. Also, the effect 

of the bubble gas diffusion is explored with Gilmore-Akulichev model. The gas 

diffusion is found to make the bubble expansion larger and collapse more dramatic, 

and this ability to sharpen curves tends to be stronger with higher pressure amplitude 

and lower frequency waves. Finally, GPU CUDA is implemented to simulate the 
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bubble cloud dynamics in Histotripsy via Gilmore-Akuchev model with gas 

diffusion taken into account. Compared to traditional CPU copulation, our CUDA 

simulation is proved to be 10X faster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

1 

 

CHAPTER 1  

INTRODUCTION 

 

    1.1 Therapeutic ultrasound overview 

High power therapeutic ultrasound is gaining increasing attention for its potential 

in noninvasive therapy applications. Exposed to high frequency and high pressure, 

the acoustic energy will be deposited and transformed to the high temperature in the 

focused region to cause tissue necrosis and the proposed therapy based on this 

principle is called “HIFU” [1]. [2] finds that the acoustic wave also activates the 

microbubbles of the targeted region to nucleate, grow up and collapse in a short time, 

but whether the role the of bubble cavitation is beneficial or adverse hasn’t reached a 

consensus. 

Alison [3] finds that the noninvasive thrombolysis can be realized by 

implementing the pulsed focused ultrasonic wave with frequency at 1 MHz and peak 

negative pressure at 12 MPa and this novel noninvasive tumor ablation modality is 

called Histotripsy. Different from HIFU, Histotripsy works as an invisible scalpel to 

ablate tumors mechanically without causing obviously heat effect. Later, T. L. Hall 

[4] reveals that nice real time ultrasound images can be collected while the 

Histotripsy is working to break down the tissue. This real time image feedback 

makes Histotripsy possible in clinical application if its ultrasound dosage is well 

designed. 
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Another new developing application of therapeutic ultrasound is in the drug 

delivery area [5]. Bubbles are first encapsulated with specific medicine, and then 

they function as the sender of the drug and flow with the blood current. When an 

interest location is reached, the focused ultrasound will work to collapse the bubbles 

in a short time to release the drug. 

There’re many other minimally invasive tumor ablation technologies such 

implementing radiofrequency waves [6], cryotherapy [7], lasers [8] and microwave 

energy [9]. Compared with the completely extracorporeal ultrasound modality, all of 

them may suffer with ionizing radiation, or leading to potential infection along with 

minimal intervention.  

    The inertial bubble cavitation is discovered in the HIFU application, and it is 

also believed to be the main mechanism for Histotripsy and the bubble enhanced 

drug delivery process. However, there’s no well accepted model developed to 

simulate this mechanism though many candidate models are used in papers without 

validating their feasibility.  The three most used models are GA (Gilmore-

Akulichev) model [10][11], RP(Rayleigh-Plesset) model [12]and Herring model[13]. 

GA is originally developed for the testing of seismic airguns and underwater 

explosion application [10], and it’s first applied by C.C. Church [11] to simulate the 

mechanism of the bubbles exposed to the extracorporeal shock wave used by 

Lithotripsy, which is a technique to break down the gallstone and kidney stones, and 

now it has been adopted to simulate the inertial cavitation of bubbles exposed to a 

high power mechanical waves. The RP (Rayleigh-Plesset) model describes the 
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dynamics of a free bubble in an incompressible fluid and assumes the velocity of the 

sound is infinite in the liquid. It is now the most widely used model to simulate the 

bubble dynamics in the bubble contrast agent in drug delivery area [14]. The Herring 

model [13] assumes a constant velocity of sound in the liquid and is a modification 

of the RP model. It’s not used frequently in therapeutic ultrasonic application so it’s 

not covered here.  

Due to the complexity of the bubble dynamics itself when exposed to high 

pressure and high frequency ultrasound wave, selecting a good model to simulate 

this process is extremely important. Vokurka [15] compares the above three models 

and concluded that GA works better for large amplitude of bubble oscillations but 

the maximum normalized expansion (
 

  
) is confined to be between 1and 10, which is 

not applicable for the violent expansion situation in therapeutic ultrasound 

applications. V. Sboros [16] makes a comparison of RP and GA models with 

experiment validation and proves that RP is not feasible for simulating kinetics of 

contract agent bubbles in the bubble enhanced drug delivery application. The author 

carried out computations on shell coated bubbles at ~3 µm subjected to 3MHz sine 

wave. Kelsey [17] showed that the initial bubble radius would greatly affect the 

bubble response and optimal radius is a function of specific frequency and pressure 

amplitude in order to observe the maximum expansion, and therefore results in [16] 

are not sufficient to fully compare these models. Moreover, in contrast to the 

artificially coated bubbles in drug delivery area, the size of bubbles is randomly 
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distributed in Histotripsy, so a wide range of initial bubble radius needs been 

investigated in search for a feasible model for Histotripsy.  

To our best knowledge, for ultrasound enhanced drug delivery application, 

although RP model is quite popular, its advantages over other models are not fully 

explored. And also, for the new Histotripsy therapy, there’s no well recognized 

model to simulate the bubble activity. Therefore, in our project, in order to select an 

appropriate model to simulate the bubble dynamics in the Histotripsy background 

and discuss the reasonability of using RP model in the enhanced bubble drug 

delivery process, two models are compared in terms of the bubble response exposed 

to different ultrasonic frequency and pressure combinations. One point to notice is 

that, Church [11] compares the bubble response to the shock wave with gas diffusion 

concluded and the one without diffusion and proves that including gas diffusion is 

more desirable when bubble exposed to the shock wave. So in our comparison, 

whether including the gas diffusion in GA model is also covered.  

 

1.2 GPU CUDA simulation for bubble clouds in Histotripsy  

Bubble clouds, composed of violent interaction of thousands of bubbles, is 

observed in Histotripsy therapy and considered to be directly responsible for 

mechanically destroying the soft tissue at the focus [18]. Therefore, the simulation of 

the whole bubble cloud, excited by the high pressure and frequency is essential to 

understand the mechanism of Histotripsy. It’s also significant for providing a 

standard reference to the ultrasound dosage for future clinical potential of 
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Histotripsy. In hence, the bubble cloud simulation is covered in the last part of our 

project. However, with large numbers of iteration operation inside the diffusion 

calculation, it takes long time to approach results in reasonable time. Also, the size of 

the cloud is usually in thousands, or even ten thousands of nanometer bubbles, so the 

computation time becomes a big bottleneck.  

 Nvidia CUDA is designed for general purpose parallel computing on GPU. 

Compared to other parallel platforms, it’s cheap and easy to program. In our project, 

CUDA is applied to do the most computationally intensive task and proved to 

decrease the time as much as 10X compared to original sequential code written in C.  

 

1.3 Thesis Organization 

In Chapter 2, the mathematical models of RP and GA will be explained in detail, 

the numerical simulation method and simulation results will be demonstrated in 

Chapter 3. The parallel simulation of bubbles via GPU CUDA will be covered in 

Chapter 4. The last chapter will make a conclusion of my two year research and 

make a plan for future work.
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CHAPTER 2 

BUBBLE DYNAMICS AND SIMULATION MODELS 

 

2.1 The bubble dynamics 

Acoustic cavitation describes the response of bubbles exposed to the acoustic field. If 

the acoustic frequency is not large (      ) and the pressure amplitude much smaller 

than the ambient static pressure (        ), the bubble will oscillate around its initial 

radius in a periodic mode. This is called stable cavitation and an empirical equation has 

been derived based on the simplified Keller-Herring model [17]: 

                 
                                                                       (1) 

   is the bubble radius in µm and   
    is the acoustic frequency in Eq. (1).  

However, with higher pressure level, the bubble response also largely depends on the 

pressure amplitude of the acoustic field, and thus Eq. (1) is no longer feasible in this “

inertial cavitation” scenario. 

Inertial cavitation involves the violent expansion and collapse of bubbles on the order 

of micrometer and even nanometer in a short time. In therapeutic ultrasound, inertial 

cavitation accelerates the heat effects of HIFU but may cause unwanted prefocal damage 

[19]; and also, it’s already proved to be the major contributor for mechanical necrosis in 

Histotripsy [20] and drug delivery area [21]. Therefore either way, finding a reasonable 

model to simulate the inertial cavitation process accurately and reasonably is 

tremendously important to reveal the influence of inertial cavitation on the therapeutic 

ultrasound applications. RP and GA models are widely used in this situation and their 
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discussion will be detailed in 2.2 and 2.3. The efficacy of involving gas diffusion in the 

simulation is discussed in 2.4 and the acoustic field parameters are specified in 2.5. 

 

2.2 Rayleigh-Plesset Model 

The generalized Rayleigh-Plesset equation [12] describes the response of the bubble in 

the following form 

   
   

   
 

 

 
 

  

  
 

 

        
  

 
 

  

 

  

  
                                   (2) 

In Eq. (2), R is bubble radius, ρ is the density of the liquid where the bubble is and set 

to be water 998 g/   ;   is the pressure inside the bubble and    is the far-field 

pressure of the liquid surrounding the bubble;   is surface tension,   is fluid viscosity. 

This model assumes single spherical bubble in an infinite medium, and the gas content 

of the bubble is constant.  

 

2.3 Gilmore-Akulichev Model 

Church [11] first implemented GA model into simulating the bubble response 

excited by the acoustic shock wave, and its basic form is  
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Where, 

  

                                                            (4) 

   
   

  

    

  
                                                       (5) 

         
  

 
  

    

 
                                      (6) 
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In Eq. (3)(4)(5)(6), R represents the bubble radius, U is the bubble wall velocity, C is 

the acoustic speed at the bubble wall and H is the enthalpy.    is the liquid pressure, and 

the bubble wall pressure is P(R),    is the gas pressure inside the bubble, and     is the 

liquid dynamic shear viscosity. The detailed derivation of Eq. (3)(4)(5)(6) is in [23]. 

Compared to RP model, the gas content of the spherical bubble is not necessarily 

constant. And this character makes possible to include gas diffusion in GA model. 

 

2.4 Gas Diffusion  

Gas diffusion happens when the gas densities of different media are different. More 

gas flows into the less gaseous area until their densities become identical. In our project, 

in the dilute bubbly liquid, with exposed high pressure acoustic wave, microbubbles are 

nucleated, expand and rupture and afterwards repeat the above process. During 

nucleation and expansion stage, gas would flow from the surrounding fluid to the bubble, 

whereas, during collapse stage, large amount of gas would be released from the bubble to 

the fluid.  

With diffusion concerned, the gas pressure of    in Eq. (6) is no longer a constant 

value. Instead, it depends on the gas moles and the ever-changing bubble radius as shown 

in Eq. (7). 

       
  

  
 

 

  
 

  

 
 

  

 
   

  
                               (7) 

In Eq. (7),     is the initial equilibrium radius and     is the time-varying equilibrium 

bubble radius.    is the initial number of gas moles and   is the gas polytropic exponent 

and its typical value is 1.4. To investigate the effect of gas diffusion on the inertial 
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cavitation, it will be added to the GA model to compare the bubble response with the one 

without gas diffusion included. 

 

2.5 Acoustic Parameter Metrics 

Kelsey J.C [17] derives the optimal initial bubble radius for maximum expansion 

depending on the acoustic frequency and pressure amplitude: 

 
        

 

                         

                           (8) 

In Eq. (8), P is the pressure amplitude for the acoustic sine wave in MPa.    and 

         are frequency and initial optimal bubble radius in MHz and µm respectively. 

For example, if  =1 MHz, P=1 MPa, then the optimal bubble radius is 0.2454 µm. 

 In order to get the best performance in our model, a wide range of frequency and 

pressure are included and the initial radius given to the model are calculated based on Eq. 

(4). Besides the acoustic frequency and pressure, the parameter PRF (Pulse Repetition 

Frequency) also affects the response of bubbles in Histotripsy. The PRF is much smaller 

than the acoustic frequency (the ratio is closed to ≈1:1000 in [22]). After the first several 

collapse cycles, with long time waiting for next excitation, the bubble would be 

fragmented into small nuclei and the old ones are not available. Therefore, instead of 

including PRF, a large range of initial bubble radii calculated via Eq. 4 are provided 

representing different starting radii generated in pulsed Histotripsy treatment. 

Table 1 covers the range of frequency (in MHz), pressure amplitudes (in MPa) and 

radii (in µm) used in the simulation. Notice that when f=0.5 MHz, and pressure 8.0 MPa, 

the initial radius can be as small as 30.75 nm. 
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Table 1 The acoustic parameter metrics 
P/MPa 

 

 

f/MHz 

 

0.01 

 

0.1 

 

0.3 

 

0.5 

 

0.7 

 

1.0 

 

3.0 

 

5.0 

 

8.0 

0.5 4.7795 2.19727 0.8092 0.4899 0.3508 0.2459 0.0820 0.0492 0.03078 

1.0 3.1273 1.9404 0.7942 0.4865 0.3495 0.2454 0.0820 0.0492 0.03077 

3.0 1.4147 1.2281 0.7101 0.4651 0.3413 0.2425 0.0819 0.0492 0.03076 

5.0 0.9290 0.8697 0.6152 0.4351 0.3289 0.2380 0.0817 0.0492 0.03075 

 

  The interaction of bubbles is also involved in the tissue destruction and the drug 

delivery process. And also in the drug delivery area, the bubble will be normally coated 

with a shell to keep its stability [24]. However, since our main goal is just to focus on the 

initial stage of single free gas bubble activity, both the shell and the interaction process 

are neglected in the simulation. The parameters describing the bubble response include 

the normalized bubble radius  
    

  
 , the maximum expansion time      

, and the collapse 

velocity     . 
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CHAPTER 3 

SIMULATION RESULTS 

 

For applications like the drug delivery, once the bubble undergoes its initial expansion 

and collapse, the shell will be ruptured and the drug will be released . So in Section 

3.1only the first bubble expansion and collapse is considered in this scenario. For other 

applications like Histotripsy, multiple continuous acoustic cycles are expected in one 

pulse repetition period, so the bubble activity along 20 cycles of ultrasonic wave is 

discussed in Section 3.2. The stability of these two models would be covered in Section 

3.3. 

 

3.1 Bubble first collapse activity  

 

(a)                                                        (b)           

Fig. 1 The normalized bubble expansion with the time cycle at frequency 0.5 MHz, 

pressure amplitude 10KPa (a) and frequency 5 MHz, pressure amplitude 8 MPa (b).  The 

legend GA(1) is GA model without gas diffusion, and GA(2) is GA model where the gas 

diffusion is included. 
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During the first collapse from Fig. 1, when the frequency is at 0.5 MHz and pressure at 

10 KPa, the bubble expansion tendency for different models are similar, but as the 

frequency increases to 5 MHz and pressure at 8 MPa, the specific expansion extent and 

maximum expansion time are becoming different for different models.  Fig. 2 further 

explores the above differences. When the pressure amplitude is larger and the frequency 

smaller, the expansion extent will be maximized. Notice that when the pressure is larger 

than 1Mpa, regardless of the frequency, the expansion extent from Rayleigh-Plesset 

model is more dramatic than the other two.   Fig. 2 also shows the differences in the 

maximum expansion time normalized with respect to the pressure amplitude. It indicates 

that for our frequency and pressure range, the maximum expansion happens within 2 

cycles, which means that if maximum expansion is expected, 2-cycle acoustic wave 

works better than the single cycle one when other parameters are the same. And also, 

when the frequency is smaller and pressure larger, the maximum expansion would 

happen at a later time slot.   

(a1)                                                      (b1) 
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(a2)                                                      (b2) 

 

 

 (a3)                                                      (b3) 
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(a4)                                                      (b4) 

 

Fig. 2 The normalized maximum bubble expansion value (a) and time (b) with changing 

pressure amplitude when frequency is 0.5 MHz(a1,b1), 1MHz(a2,b2),3 MHz(a3,b3) and 

5 MHz(a4,b4). The legend GA(1) is GA model without gas diffusion, and GA(2) is GA 

model where the gas diffusion is included.   

 

When frequency is 0.5 MHz and pressure at 8 MPa as illustrated in Table 2, the 

maximum expansion for different models can be ~2000 within the first expansion. But 

the maximum velocity for RP can be as fast as 4690.7 Km/s while for the other two, it 

can only be ~1000 m/s. This indicates that the bubble collapses much more violently in 

RP model than in GA model although they have same maximum radius expansion extent. 

Table 2, bubble first collapse time, velocity and maxim expansion when frequency is 0.5 

MHz and pressure 8 MPa. 

 

Models 

Maximum 

Expansion 

Maximum 

Expansion Time/us 

Collapse Velocity 

(m/s) 

Rayleigh-Plesset 2304.3602 0.80 4.6907exp(6) 

Gilmore-Akulichev 2266.2061 0.396 841.094 

Gilmore Akulichev-

no Diffusion 

2279.653 0.78 1157.97 
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3.2 Bubble activity within 20 Cycles  

   Fig. 3 below describes the bubble activity along 20 cycles, and it shows a much 

different scenario compared to Section 3.1. After the first expansion, the bubble goes 

remarkably different with RP and GA model.   

   

(a)                                              (b) 

Fig. 3 The normalized bubble expansion with the time cycle at frequency 0.5 MHz, 

pressure amplitude 300KPa (a) and frequency 5 MHz, pressure amplitude 8 MPa (b). The 

legend GA(1) is GA model without gas diffusion, and GA(2) is GA model where the gas 

diffusion is included.   

 

Seen from Fig. 4, in spite of frequency, at small pressure (<1MPa), the maximum 

expansion is still similar, although specific bubble activity along time are different shown 

in Fig. 3.When the pressure is larger than 1 MPa, the maximum expansion becomes far 

more violent with RP model than the other two. The normalized maximum expansion can 

be 8533 and collapse velocity can be 1.0021exp (+18) m/s based on Table 3. This 

velocity obviously violates the special relativity theory that no matter can travel faster 

than the speed of light (~3exp(8) m/s)) in physical world. In lithotripsy where the shock 
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wave pressure amplitude can be 1GPa, the collapse velocity can only be  (1000). 

Therefore, if a long time simulation is expected, Rayleigh-Plesset model is inferior to the 

other two. 

Also, the effect of gas diffusion becomes more phenomenal in Fig.3(b). After first 

expansion, the bubble with gas diffusion tends to magnify both the expansion and 

collapse extent, causing the change more extreme. Fig.(4) further confirms this by 

observing that the maximum expansion with gas diffusion included is larger than the one 

without diffusion when the pressure amplitude is larger than 1 MPa. This makes sense in 

theory because during the expansion period, more gas are transferred into bubble, making 

the expansion extent larger than the one without diffusion considered; and during 

collapse, the gas released from the bubble could make the bubble even smaller.   

(a1)                                                                 (a2) 
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(a3)                                                                     (a4) 

  

Fig. 4 The maximum bubble expansion value with changing pressure amplitude when 

frequency is 0.5 MHz (a1), 1MHz (a2), 3 MHz (a3) and 5 MHz (a4) The legend GA(1) is 

GA model without gas diffusion, and GA(2) is GA model where the gas diffusion is 

included. 

 

 

Table 3, bubble maximum expansion value and time, and collapse velocity in 20 cycles 

when frequency is 0.5 MHz and pressure 8 MPa. 

 

 

3.3 Bubble activity in the last five average cycles 

Models 
Maximum 

Expansion 

Maximum Expansion 

Time/µs 

Collapse Velocity m /sec 

Rayleigh-Plesset 8533.336 25.488 1.0021e+18 

Gilmore-Akulichev 2458.151 29.7591 2446.52 

Gilmore Akulichev-

no Diffusion 

2279.6530 1.4800 1556.89 
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In order to verify the stability of bubble activity via different models along the time, 

the last 5 cycles are extracted from the whole 20 cycles. The average maximum 

expansion for each cycle and the standard deviation are calculated and plotted in Fig. 5.   

(a1)                                                                 (a2) 

 

 

 (a3)                                                                 (a4) 

 

Fig. 5 The average maximum bubble expansion value with changing pressure amplitudes 

when frequency is 0.5 MHz (a1), 1MHz (a2), 3 MHz (a3) and 5 MHz (a4). The legend 

GA(1) is GA model without gas diffusion, and GA(2) is GA model where the gas 

diffusion is included. 
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Fig.(5) reveals that for the last five cycles, GA model performs much more stable than 

RP. The modeling result of this characteristic determines whether Histotripsy can be 

considered as a reliable and well controlled modality for clinical application. In theory, 

since the second order term is included in GA, GA is assumed to be a more accurate one 

than RP. But still, experimental validity is yet needed urgently to further prove this.  
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CHAPTER 4 

BUBBLE CLOUD SIMULATION VIA GPU CUDA 

 

The bubble cloud is a direct boost to mechanically fractionating soft tissues in 

Histotripsy. Therefore, in order to pave the way for the future clinical application of 

Histotripsy, simulating the bubble cloud would provide a good reference for treatment 

planning and dosage design in advance.  

[25] observes that in targeted region, the bubble cloud is generated and grow toward 

the source of acoustic wave very fast. The cloud is composed of thousands of 

microbubbles and each of them grows, expands, interacts and collapses. These bubbles 

are assumed to be independent from each other in dilute fluid and this indicates the 

potential of implementing the simulation via parallel tools. The high power acoustic wave 

utilized in Histotripsy is emitted originally in the form of sine wave. However, when 

crossing the boundaries of media with different acoustic impedance characteristics, the 

sine wave will be distorted and becomes nonlinear. KZK[26] is selected in our project to 

simulate the distorted acoustic wave applied to the bubble cloud. With analysis in 

Chapter 3, the significant effect of gas diffusion on the bubble expansion exposed to 

continuous acoustic wave is proved. Therefore, in order to get results as accurate as 

possible, gas diffusion will also be taken into consideration in spite of its slow 

computation speed.  All the above requirements make the simulation of cloud bubble 

hard to finish in reasonable time. Therefore in our project, GPU CUDA will be used as 

the parallel computing tool. 
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4.1 GPU CUDA overview 

CUDA, short for Compute Unified Device Architecture, is an emerging parallel 

programming model implemented on Nvidia GPU (Graphics Processing Units) 

[27]. Because of its easy programming and cheap compute cost, it has been widely used 

as a powerful scientific computing tool in molecular dynamics simulation [28], fast 

genome alignment [29] and so forth.  

In our project, due to the high parallelism potential among thousands of bubbles inside 

one cloud, CUDA is introduced to model one bubble cloud and proved to increase the 

simulation speed by10X compared to running the same code in C++.  

 

4.2 The acoustic source 

To get a nonlinear acoustic wave model, KZK equation, modified based on Burgers 

equation, is used to simulate the wave source with consideration of specific location, non-

linearity, and gas diffraction. In this equation, for bubbles in various locations, its 

incoming ultrasound wave is different. GA will be used as the simulation model for the 

activity of each bubble since it’s confirmed to be a better simulation model in Chapter 3.   

The KZK equation is: 

   

    
 

  

 
  

   
 

   
 

  

   
 

 

     
 

    

   
                                                 (5) 

  is the pressure amplitude;   is the axial coordinate of the wave;    is the wave speed 

traveled in the medium;    is the nonlinearity coefficient;    is the ambient density;   is 

the sound diffusivity, and   is the retarded time. Thank Dr. Joshua Soneson at FDA for 

sharing the code to KZK equations for spherically focused transducers and Jin Xu [24] 

for further verifying the correctness of this method used in Histotripsy. 

http://en.wikipedia.org/wiki/Graphics_processing_unit
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4.3 Parallel model 

Fig. 6 is the memory model of GPU and computation model for CUDA. The smallest 

compute unit in GPU is called thread. Thousands of threads form a block and within one 

block, a shared memory is used to store shared variables and data. In our project, each 

bubble, located in different places, is exposed to its specific acoustic pressure           , 

so the simplest method is to assign each bubble to one thread in CUDA.  

 

 

                Memory model                                    Computation Model 

Fig .6 CUDA heterogeneous programming model [30] 

 

The detailed flow chart is as following: 
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Fig. 7 The flow chart of the parallel cloud simulation 

 

 

4.4 Comparison 

The Nvidia GPU device we used is Quadro FX 5800, with 240 processing nodes and 

support for floating point calculation. The Host CPU is Intel Core 2 Duo E8400 with 

main frequency 3MHz. To compare the computing performance fairly, we also 

implement the same algorithm in C++ based on the above flow chart on the CPU. The 

performance difference is shown in table 4 and Fig. 8. The runtime is achieved based on 

the average time from 5 trials for each situation. At first, when the bubble number is 

smaller than 50, C++ performs better than CUDA, which makes sense because (1): the 

data transfer between GPU and CPU consumes time and (2) the bandwidth of GPU is 
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much smaller than CPU, and (3) the computation speed of CPU is faster than tens of 

concurrent threads. If bubble number is larger than 50, the advantage of computing on 

GPU becomes apparent and CPU works much slower than GPU with more bubbles. And 

also, when the bubble number doubles roughly (330, 825, 1815), CUDA runtime doesn’t 

change linearly with the increase of bubble number whereas the C++ runtime does. The 

encouraging results open a new door for the future cloud simulation when more factors 

are included. 

 

Table 4 the computation time comparison of CUDA and C++ in terms of the number of 

bubbles in one cloud. 

Bubble numbers CUDA runtime/s C++ runtime/s 

10 4136 758 

50 5655 3361 

330 8074 11089 

825 8379 >30600 

1815 11082 >109313 
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Fig. 8 the performance comparison of CUDA and C++ in terms of changing bubble 

number 
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CHAPTER 5 

DISCUSSION AND FUTURE WORK 

 

In our project, the classical models for inertial cavitation bubble exposed to therapeutic 

ultrasound are simulated and compared in terms of different ultrasound exposure 

conditions. For the first collapse, the simulated bubble activity of both GA and RP shows 

similar evolutionary trend, except that the bubble collapse from RP model is more violent 

compared to the other. And also, when gas diffusion is added to the GA model, the effect 

is not obvious for the first collapse. However, when 20 cycles are applied , results from 

RP model become greatly different from the other two, and the maximum velocity can 

even larger than the speed of light. The gas diffusion tends to flatten the sharp slope and 

constrain the extreme velocity change, making the simulation of GA more stable than the 

one without diffusion.  

The computation intensive bubble cloud is the primary mechanism behind Histotripsy 

and many other ultrasound therapies. Based on the Gilmore-Akulichev model for each 

bubble, a bubble cloud model is built up and the computation efficiency is improved by 

10X compared to C++ code via using GPU CUDA. However, this parallelism is still 

brute-force method and for each bubble, the iteration process induced by Runge-Kutta 

method and the gas diffusion process is the most time consuming part and they’re not 

parallelized internally yet. And also, the bubble interaction process is not included in our 

cloud model. Our next step is to incorporate the interaction activity between bubbles into 

our whole code and further parallelize the whole code to make it faster. Notice that in our 

parallel model, the initial bubble radius is constant and on the order of micrometer, while 
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the initial optimal bubble radius can be derived by [17] if the acoustic wave is linear and 

no gas diffusion there. Our future work will also involve finding the optimal initial radius 

when the wave is nonlinear and gas diffusion is included. 
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APPENDIX 

CONVERGENCE OF ADAPTIVE RK-4 METHOD 

 

In theory, for the first order differential equation: 

                                                                       (6) 

If RK-4 is applied to solve Eq. (6) numerically, the truncation error   would be 

O(  ) [31]. 

Obviously,              , which means if the step size is set small enough, the 

   could be minimized to zero finally. In real world, due to the limited approximation of 

real numbers in computer, instead of making    to be zero, a realistic tolerant bound is 

set so that ideally if    decreases monotonically and finally below the tolerant bound, 

then the step size is said to satisfy the convergence test and the corresponding result is 

trustable.  

Therefore, initially in our project, we did the following experiment to search for a 

feasible step size to make the result convergent. The relative error bound here is 

arbitrarily chosen as      . Given the rough maximum bubble radius can be O(1000), 

the bound guarantees a satisfying small difference.  

The relative error is defined as  

    
                  

        
                                (7) 

 

For solving GA with RK-4, the initial step size h is 5 ns, but it is found so large that the 

program crashes with invalid values. Only until h is around 10.9 ps, the steep region is 

traversed and valid values are reached. Seen from Fig. 9, 10.9 ps is already a small 
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enough step size to make the relative difference well below       .However, with 

smaller step size given, the error doesn’t decrease monotonically. Instead, it’s changing 

randomly with the minimum error at the step size between 6.84 ps and 6.31 ps. 

 

Fig. 9 The relative error change with different time step 

 

Besides truncation error   , the round off error will also be involved in numerical 

computation if the step size is too small. [32] does several the numerical experiments 

with Euler’s method and shows that the rounding error is inversely proportional to    

.For our computation, double precision Matlab is implemented, meaning the valid result 

is within 16 digits per step. With 20 cycles of 0.5 MHz sine wave exposed, the number of 

iteration is       . Large iteration times and small step size not only make the 

computation more time-consuming, but also accumulates the round-off error to an extent 

which will lead to undesirable results eventually. This is probably why the error is 
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randomly changing along the way in Fig. 10. Another contributor may be from the 

rounding error during the iteration process. Small steps size indicates small change of 

radius for each iteration (           ), and these small values are easily rounded, and 

this kind of error is more apparent just before the bubble expansion period. The radius 

iteration in that moment can be expressed as                             . 

With the above reasons bearing in mind, three feasible approaches can be applied to 

reduce them. One is to directly increase the computation precision by adding some 

external software packages. Although the precision becomes higher, the corresponding 

computation time is much longer, as well. Another way is to implement some 

compensated methods like Kahan summation rule [33], pairwise summation [34] and so 

forth.  

The last alternative is to implement adaptive step size adjustment strategy. Adaptive 

method has been used dominantly in current numerical simulation applications [33]. 

Compared to the traditional fixed method, the step size can be adjusted in real time based 

on the local error, with big step size for smooth region and small step size for sharp 

region. This approach will focus the most computation energy on the most remarkable 

region efficiently and accurately. The round-off error always exists in the computation. 

Whereas overall, the number of iteration could be largely reduced by thousands and even 

millions [35] if large step is applied in the preceding smooth region, and this could slow 

down the accumulation of round-off error and decrease its influence on the final result.  

As shown in Fig. 1, the shape of the bubble radius expansion within the first expansion 

is increasing at the fist 0~1.8 cycles and only in the last moment, the bubble collapses in 
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a very fast speed. This is where the adaptive method could display its advantage to the 

full. 

 From step n to n+1, RK-4 method is used to discretize Eq.(6) as given:   

    
         

  
                                         (8) 

 

            
 
                                          (9) 

    
  is the estimate of     . 

So the one step error is           
            

   
       . There’re variant ways 

to set the value of the weights    and   
 [36][37][38]. To add some flexibility, Our 

project here simply identifies    and   
  to be 1 and two local error indicators as 

following: 

    
                                              (10) 

    
  

       

       
                                                      (11) 

                     

And these two indicators would be plugged in the classical RK-4 to adjust the step size 

in real time as shown in Fig. 10. 
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Fig. 10 The flow chart of Rk-4 with adaptive step size control 

 

With the control in Fig. 11, the local error can be well controlled. The global error is 

defined as the accumulation of the local error along iteration: 
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                (12) 

Although two local error indicators are applied in our project, either way, the global 

error is well controlled as long as the number of iteration is finite. 
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